트랜스포머의 한계를 넘다: 실시간 학습과 효율성을 잡는 ‘리퀴드 뉴럴 네트워크(LNN)’와 SSM의 시대
1. 왜 지금 ‘포스트 트랜스포머’를 말해야 할까요? 2. 살아있는 데이터의 흐름, 리퀴드 뉴럴 네트워크(LNN) 3. 선형적 효율성의 끝판왕, 상태 공간 모델(SSM)과 Mamba 4. 실무 적용: 트랜스포머를 버려야 할까요? 5. 결론: 유연한 사고가 미래의 AI 개발자를 만듭니다
경제, 테크, 개발부터 라이프스타일까지 – 세상을 읽는 완벽한 지식 큐레이션
1. 왜 지금 ‘포스트 트랜스포머’를 말해야 할까요? 2. 살아있는 데이터의 흐름, 리퀴드 뉴럴 네트워크(LNN) 3. 선형적 효율성의 끝판왕, 상태 공간 모델(SSM)과 Mamba 4. 실무 적용: 트랜스포머를 버려야 할까요? 5. 결론: 유연한 사고가 미래의 AI 개발자를 만듭니다